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Abstract 

Study of metric space is closely related to topology or topological space. In this paper we study the definition of 

metric, metric space and some examples. Also we learn how the metric is used to define the open set and closed set 

in metric space. This paper also explore some applications of metric in transport, air transport, machine learning 

and computer science. 
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INTRODUCTION 

Topology is branches of mathematics and topological space is a set of points, along with a set of 

neighborhoods for each point, satisfying a set of axioms relating points and neighborhoods. In 

Mathematics, Topology has an importance due to their huge application in various field. The Metric 

Space is closely related to the Topology in that study of metric Space concerned itself also with the 

set of points and limit points based on a function which gives a distance. The metric space has been 

working for decade in various applications like internet searching, image classification, protein 

classification etc. The metric space is a set where a notion of distance (called a metric) between 

points or elements of the set is defined. Every metric space is a topological space in a natural 

manner. In metric space, every terms like continuity, convergent , divergent, connectedness, 

compactness are define in terms of open set and closed set so to understand the concept of open 

set and closed set are very important. Deep metric learning and embedding metric are based on 

metrics which played vital role in machine learning and computer science.  Also there are so many 

application of metric not only in basic science but also in our daily life. 

 

METRIC AND METRIC SPACE 

Given a set X, a function d : X × X → R is a metric (or distance function) on X  if for all x, y ∈ X we 

have the following three :  

i) Positivity: d(x, y) ≥ 0 ∀𝑥. 𝑦 ∈ 𝑋 and d(x, y) = 0 iff x = y. 

ii)  Symmetric: d(x, y) = d(y, x) ∀𝑥. 𝑦 ∈ 𝑋  

iii) The triangle inequality: for all x, y, z ∈ X        d(x, z) + d(z, y) ≤ d(x, y). 

 

Metric space 

A nonempty set X with a distance function or metric d is called a metric space.The metric space is 

denoted by (X, d). 
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1. Examples of Metric: 

• The trivial metric or discrete metric : 

                   Let X be a set, and d: X × X→ R be the function that maps  

                                d(x; y) = 1 if x ≠ y, and d(x; x) = 0.   

 

• The Usual Metric: 

              The usual Distance function on real line is a metric .The Usual Metric R with the metric  

              d(x; y) = lx-yl is metric space. 

 

• The Euclidean Metric in ℝ𝟐 

The Euclidean Metric in 𝑅2 is usual distance function in plane, is defined as 

       d((x1, y1); (x2, y2)) =√(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2  

In general we can define the Euclidean Metric, 𝑅n with the standard distance formula: 

              d( x , y) =√∑    (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1  

 

• Taxicab Metric:  

The name of Taxicab metric was given by Americans and it is a form of nonEuclidean 

metrics of distance. It is not a shortest distance between given two point. It is used to find 

the distance in the study of ideal city where all roads are running horizontal or vertical. In 

such kind of city it not possible to travel from one place to another place by using the normal 

Euclidean distance so it is modified. 

 

The Taxicab Metric In two-dimensional space, a taxicab metric that meets the properties of 

the metric and consists of the set of numbers described by real numbers  is defined by the 

following formula: 

                       d(𝑥,𝑦)=∣𝑥1−𝑦1∣+∣𝑥2−𝑦 2∣ 

     The Taxicab Metric In n-dimensional space: 

               We can describe the taxicab metric in ℝ𝒏 as follows:  

                      d (𝑥,𝑦)=∑ ∣ xi − yi ∣𝑛
𝑖=1  

 

• The Supremum or maximum Metric: 

   In two-dimensional space or Plane, a supremum metric is defined as 

                    𝑑∞(x , y) = max{∣ 𝑥1− 𝑦1 ∣, ∣ 𝑥2− 𝑦2 ∣}   

  In three-dimensional space, a supremum metric is defined as 

                   𝑑∞(x , y) = max{∣ 𝑥1− 𝑦1 ∣, ∣ 𝑥2− 𝑦2 ∣, ∣ 𝑥3− 𝑦3 ∣ }  

 In n-dimensional space, a supremum metric is defined as 

                   𝑑∞(x, y) = max{∣ 𝑥i− 𝑦i ∣/ 1≤ 𝑖 ≤ 𝑛}  

 

2. Application of Metric: 

In metric space, the open ball or open sphere is defined  by using metric which has an 

importance in defining limit point, interior point, boundary points of set, convergence of 

sequences, limit and  continuity of function defined on the metric space, Compactness, 

Connectedness etc. 
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Open sphere or Open ball: 

If (X, d) is a metric space and x ∈ X. The open sphere with centre x and radius r, is the subset of 

X given by  

                    𝑆𝑟 (x) = {𝑦 ∈ 𝑋: d(𝑥, 𝑦) < 𝑟, 𝑟 > 0}   

 

Examples:  

• In usual metric space R the open sphere 𝑆𝑟 (x) is the open interval (x−𝑟,x+𝑟)  

• In discrete metric space X. The open sphere   𝑆𝑟 (x) =  {x}            if 0 < r ≤ 1  

                                                                          𝑆𝑟 (x) = X                if 𝑥 > 1 

• In ℝ𝟐 with Euclidean metric , The open Sphere  

 

Closed sphere or Closed ball:  

If (X, d) be a metric space and x ∈ X. The closed sphere with centre x and radius r, is       .           the 

subset of X given by  

                              𝑆𝑟 [x] = {𝑦 ∈ 𝑋: (𝑥, 𝑦) ≤ 𝑟, 𝑟 > 0}  

       Examples: 

• In usual metric space R the closed sphere 𝑆𝑟[x] is the closed interval [x − 𝑟,x + 𝑟].   

• In discrete metric space X. The closed sphere 𝑆𝑟[x] ={x}     if 0< 𝑥 < 1  

                                                                                      𝑆𝑟 [x]= X        if 𝑥 ≥  

 

Open set: 

A subset A of a metric space (X, d) is called open if, given any point x in A, there exists a real number 

r > 0 such that, 𝑆𝑟 (x)⊂ X .  

Equivalently, A is open if every point in A has a neighborhood contained in A.  

1. In usual metric space R  

• Open interval is an open set. 

• R is an open set. 

• (a, b] is not an open set. 

• The sets ℕ, ℤ and ℚ are not open. 

• The set of all irrational numbers is not an open set. 

• {x} is not open. 

• { 
1

𝑛
 / n∈ 𝑁} is not open.  

2. In the discrete metric space X, every set is an open set. 

 

Result 

1. In metric space (X, d) the empty set and whole space X are open sets. 

• Each open sphere is an open set. 

• Arbitrary union of open sets in X is open. 

• Finite intersection of open sets in X is open. 

• Arbitrary intersection of open sets need not be open. 

                    If 𝐴n= { ( − 1 /𝑛 , 1/ 𝑛 ) / n∈ 𝑁 } then ∩ 𝐴n= { 0 }which is not open. 

 

Closed Set: 

A subset A of a metric space (X, d) is called Closed if its complement X−A is open.  
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Examples: 

1. In usual metric space R  

• Closed interval is closed set. 

• R is closed set. 

• (a, b] is closed set. 

• The sets ℕ, ℤ are closed. 

• ℚ is not closed 

• The set of all irrational numbers is not closed set. 

• {x} is closed 

• { 1 /𝑛 / n∈ 𝑁} is not closed 

2.  In the discrete metric space X, every subset of X is closed set.  

Result: In metric space (X, d), 

• The empty set and whole space X are closed sets. 

• Each closed sphere is closed set 

• Finite union of closed sets in X is closed. 

• Arbitrary intersection of closed sets in X is closed. 

• Arbitrary union of closed sets need not be close. 

• If 𝐴𝑛= { [ 1/ 𝑛 , 2] / n∈ 𝑁 } then ∪ 𝐴𝑛= ( 0,2 ]   

• Every singleton set is closed. 

• Every finite set in X is closed. 

 

Application of metric in Transport: 

The streets of big cities and motorways built in the nineteenth century often had a form of regularly 

intersecting lines at right angles with rectangular surfaces impassable area of buildings and 

agricultural land so in such a condition, it was not possible to reach the destination using the 

shortest route. In two-dimensional space, a taxicab metric is used that meets the properties of the 

metric and consists of the set of numbers described by real numbers ℝ  is defined by the following 

formula:  

                               d(𝑥,𝑦)=∣𝑥1−𝑦1∣+∣𝑥2−𝑦2∣    where 𝑥 = (𝑥1, 𝑥2),    𝑦 = (𝑦1, 𝑦2) ∈  ℝ2 

 

The journey from departure cities to the destination cannot always be traveled in the shortest way. 

Of course, the longer path may be better in another respect, for example, quality. There may be 

several possible but different routes (roads) of the journey, of which not all will have identical 

lengths or there may be several routes with equal distances. We can consider these problems using 

the theory of metric spaces for strictly defined of metrics tailored to both types of transport means 

in one, two, three-dimensional spaces as well as those dependent on the available transport routes. 

The distances described by a non-classical transport metric between towns P, S, Q lying on the solid 

of the Earth’s ellipsoid and separated by several thousand kilometers from each other. The shortest 

land route between the P, S and Q places will not be rectilinear, only curvilinear taking into account 

the curvature of the Earth’s ellipsoid. The shortest route between the towns of P, S, Q described by 

Euclidean metric could be only achieved by air.  

 

Metric Learning:  

Metric learning is based on a distance or metric that aims to establish similarity or dissimilarity 
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between objects. The goal of metric learning is to reduce the distance between similar objects or 

closer the similar objects and to increase the distance between dissimilar objects. The metric 

learning is based directly on metric or distance that aims to establish the similarity and 

dissimilarities between the object or image. Metric learning is failed in face recognition and face 

verification if the faces of same person represented in different poses and expression. For this we 

need deep metric learning. 

 

Deep metric learning uses neural Network to learn discriminative features from the objects or 

images and then compute the metric. Deep metric learning is use for the task of face or image 

verification,  face recognition, image classification, anomaly detection etc  . There are two loss 

function, Contrastive loss and Triplet loss which are widely used for deep metric learning. 

Contrastive loss consists of two identical sub networks that share the same sets of parameters and 

learn by calculating metric highest level feature encoding of each subnetwork with distinct input. 

Triplet loss consists of three identical subnetworks that share the same parameter. It  is required 

the distance between the anchor sample and the positive sample to be smaller than the distance 

between the anchor and negative sample. 

 

The Embedding of  metric space has created the interest of several communities like researchers in 

the networking community as well as researchers in computer science, Mathematicians etc. In 

recent time embeddings of metric have played a vital role in computer science for evolution of 

algorithm.Embeddings are also applicable in many areas including computational biology, 

computer vision, networking and statistics. 

 

CONCLUSION 

In this paper we studied the definition of metric, metric space and its examples. Also we saw how 

open set and closed set are defined in terms of metric and many examples of open and closed 

sets.This paper shown that how the metric is used in daily life for road transport and air transport, 

How the metric is applied in metric learning and deep metric learning for image and face 

recognition and verification.   
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